$(16.00 \mathrm{~g})$, and absolute $\mathrm{EtOH}(70.00 \mathrm{ml})$ was refluxed for 6 hr . The product was washed with EtOH, dissolved in $10 \% \mathrm{NaOH}$, precipitated with HCl , washed several times with $\mathrm{H}_{2} \mathrm{O}$, and dried. It was crystallized from EtOH.

Table II

6,8-DibROMO-2- p-XYLYLTHio-3-ARyl-
(OR ALKYL-) 4-QLINAZOLONES

R	\% yield	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Formula ${ }^{\text {a }}$
$\mathrm{C}_{6} \mathrm{H}_{5}$	50	187	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	59	139	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	60	181	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$)S
$p-\mathrm{CII}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	45	145	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	60	16:	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{OS}$
$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	5f	152	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{OS}$
$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	50	182	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$p-\mathrm{OC}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	5.	166	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
CH_{3}	60	124	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{OS}$
$\mathrm{C}_{2} \mathrm{H}_{5}$	65	140	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	45	120	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	70	151	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$

${ }^{a}$ See Table I, footnote a.

Table III

6,8-Dibromo-2-n-butylthio-3-ARyi(OR ALKYL-) 4-QUINAZOLONES

R	\% yield	$\mathrm{Mp}^{\circ} \mathrm{C}$	Formul ${ }^{\circ}$
$\mathrm{C}_{6} \mathrm{H}_{5}$	70	185	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	40	215	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	48	190	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	60	235	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	55	250	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{OS}$
$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	58	270 dec	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{OS}$
$o-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	45	265 dec	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	54	252	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$p-\mathrm{OC}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	50	248 dec	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O} .5$
CH_{3}	55	270 dec	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$\mathrm{C}_{2} \mathrm{H}_{5}$	60	225 dec	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	52	255 dec	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	60	265 dec	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{OS}$

${ }^{a}$ See Table I, footnote a.

Table IV
6,8-Dibromo-2-allylthio-3-ARyl(OR ALKYL-) 4-QUINAZOLONES

R	\% yield	Mp. ${ }^{\circ} \mathrm{C}$	Formula ${ }^{\text {a }}$
$\mathrm{C}_{6} \mathrm{H}_{5}$	50	276	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	48	152	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	45	222	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	52	275 dec	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	42	255 dec	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{OS}$
$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	53	236 dec	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{OS}$
$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	54	215	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$p-\mathrm{OC}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	60	157	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
CH_{3}	45	282 dec	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$\mathrm{C}_{2} \mathrm{H}_{5}$	68	115	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$n-\mathrm{C}_{4} \mathrm{H}_{9}$	40	199	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2}$	65	135	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$

[^0]Similarly, various 6,8-dibromo-2-mercapto-3-aryl- (or alkyl-) 4-quinazolones were prepared from the corresponding ary (or alkyl) isothiocyanates and 3,5-dibromoanthranilic acid (see Table I).

6,8-Dibromo-2-ethylthio-3-phenyl-4-quinazolone.-To a solution of $\mathrm{NaOH}(5.00 \mathrm{~g})$ in 85 ml of $50 \% \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, 6,8$-dibromo-2-mercapto-3-phenyl-4-quinazolone (7.50 g) was added. The solution was stirred, filtered, and treated with EtI (4.00 ml). After being stirred for another hour, the crystalline product was washed ($\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$). Long needles were obtained on crystallization from EtOH, mp 230°.

Similarly, varions 6,8-dibromo-S-substituted-2-mercapto-3-aryl- (or alkyl-) 4-quinazolones have been prepared (see Tables II-V).

Table V
6,8-Dibromo-2-ISOPROPYLTHIO-3-ARYL(OR ALKYL-) 4-QUINAZOLONES

R	\% yield	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Formula ${ }^{\text {a }}$
$\mathrm{C}_{6} \mathrm{H}_{5}$	65	248 dec	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
${ }_{o}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	57	273 dec	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	50	268 dec	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	60	265 dec	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$m-\mathrm{ClC}_{2} \mathrm{H}_{4}$	40	263 dec	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{OS}$
$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	38	222 dec	$\mathrm{C}_{17} \mathrm{HH}_{1} \mathrm{Br}_{2} \mathrm{ClN}_{2} \mathrm{OS}$
$o-\mathrm{OCH} 3_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	30	262 dec	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$p-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	[5)	260 dec	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$p-\mathrm{OC}_{2} \mathrm{H}_{0} \mathrm{C}_{6} \mathrm{H}_{4}$	41	98	$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
CH_{8}	45	264 dec	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$\mathrm{C}_{2} \mathrm{H}_{5}$	37	258 dec	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$n-\mathrm{C}_{4} \mathrm{H}_{8}$	32	2.5 .5 dec	$\mathrm{C}_{5} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	j4	275 dec	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{OSS}$

${ }^{a}$ See Table I, footnote a.

Acknowledgment.-Thanks are due to the authorities of the Banaras Hindu University for providing the necessary facilities and also to the Government of India for the award of a Research Training Scholarship to one of us (M. R. C.).

Schiff Bases Containing Quinoline Rings ${ }^{1}$

Carl Tabb Bahner, David Brotherton, and Mary Karasek Brotherton
Carson-Newman College, Jefferson City, Tennessee 3ir60

Received October 6, 1967

Schiff bases listed in Table I were prepared by heating equal molar quantities (0.03 mole) of aldehyde and amine in a hot oil bath at 130° for 1 hr . After cooling each mixture, the product was extracted with hot isohexane ${ }^{2}$ and separated in crystal form upon cooling. One of the componnds showed activity against tumor cells in vitro. None of them was effective against Walker 256 tumors in rats (see Table I on the following page).

[^1] Grants No. CA-0371-08-9 from the National Cancer Institute.
(2) A mixture of isomeric branched hexanes.

T'ubre I										
Nis.	Deriv of rumbline	Viehn, in	$\left.\mathrm{Il}_{1}\right)^{\circ} \mathrm{O}$	Jombuma						
1	```3-[(2-Pyridylmethylene)- amino]-```	7	110-111*	$\mathrm{Cr}_{5} \mathrm{H}_{11} \mathrm{~N}_{3}$	$\underline{14}(4.5)$	$3!$	(1)1)	t.i	230	$\because 8$
2	```3-[(3-Pyridylmethylene)- amino]-```	65	$s 7-38 \%$	$\mathrm{Cis}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}$	$211(4.16)$	>100	111)	1.4	20,	$\because ;$
i)	: -[(4-Pyridylnethylene)-amino]-	76	ST--88:	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}$	$\because 094.8$	3	100	0.8	(i2:	1%
4	2, ${ }^{\prime}$ '-(Methylidymenitrilo) di-	(1)	173-174	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3}$	2010	20	1500	1.1	(.911)	$1) \therefore$
5	$4,: 3$-(Metly lidynenitrilo)di-	85	125	$\mathrm{C}_{1} \mathrm{H}_{13} \mathrm{~N}_{3}$	2084.5	$\because 1{ }^{1}$	90	11.7	195	1/\%
13	2-(N-3-Prridylfommimidoy)-	50	(1),-1)4	$\mathrm{Cl}_{15} \mathrm{IT}_{11} \mathrm{~N}_{5}$	209 (t.6)	3	(10)	1.1	2-91)	2\%;

 All componds were analyzed for C and II. Analytical results for these elenents were within $\pm 0.4^{6}$ of the theorenical vahns. \cdot he-
 Center at Sonthern Research Institute. We are grateful to Professor Alexander Haddow, Mh. J. F. Fiveretr, and Mr. (i. V. Minchles
 Fach conpond was administered as a single intraperitoneal injechion in Arachis oil on the day following thnor fuphantion or on ine

Optical Resolution of Iodopanoic Acid

I. Pitre and s. Bovert

liesearch Laboratories, Bracco Industria Chimica, Milan, Ilaly
Received December 11, 1! \&~~~
In comection with a sududy on physicochemical properties of X-ray contrast media the two enantionem of (土)- α-ethyl- $\beta-(3-$ amino,-2,4,6-triiodophenyl)propionit: acid (iodopanoic acid) were prepared. Optical resohtion was carried ont by Marckwald's technique, ${ }^{1}$ operating in EtOH sohntion with (-)- and (+)- $\alpha-$ phenethylamine.

Experimental Section

(\pm)- α-Ehyl- β-(3 -amino-2, 4, 6 -triodophenyl)propionic acid (5. $1 \mathrm{~g}, 0.1$ mole) and 12.1 g (0.1 mole) of (-)- α-phenylethyamine were dissolved in 700 ml of koiling 9.5c EtOII. After decoloration with active charcoab, the solntion was kept overnight: at room remperature. The (-)- α-phenyletlyy lamine sah was filtered off (29 g), mp $162-163^{\circ},[\alpha]^{2} \mathrm{n}-4.0^{\circ}(c \cdot$, EtOII). The monher liquor was nsed for recovery of the opical isomer. Recrystallizalion from BtoFI gave 10.5g of (rystak, mp 16^{-0}. $[\alpha]^{20} 1 \mathrm{~b}-4.0^{\circ}(c 9, \mathrm{~F}+\mathrm{OH})\left(30 \sigma_{c}\right.$ over-ah $)$.
(1) W. Marckwald, Chem. Ber., 29, 43 (1896).

The mother liqnor connaning the (-)- α-phenethylamine suli was evaporated to dryes. The residue was stired with stot mol of 4^{4} : NaOH solution and (-)- α-phenemhylamine wat extracied with four athonl portions of ether. After acielification
 propionie acid, mp $75-110^{\circ},\left[\left.\alpha\right|^{20} \mathrm{p}+3.1\left(\mathrm{c}^{3}, \mathrm{EtOH}\right)\right.$, w: on-
 + + -a-phenethylanine were diswolved in 600 ml of hoiling EHOH and the whum was allowed to crotallize an monn mon-

 $\left.+4.1\left(c_{0}, \mathrm{EtOH}\right)(3)^{2}\right)$.
 Fonnd: C, 32.88; H, : 3.49 ; 1, 7.i.
(-)- α-Ethyl- β-(3-amino-2,4,6-triiodophenyl)propionic Acid. The (-)- $\alpha-$ phenethylamine salt (of T', NaOH sohntion and extracted with three Bth-mp portions bit ether. The water wohnion was acidified with HCl , and the acid was tileced, wathed (INo), and erywallized foon 40 me of

 ($\because 3.15:$ I, 6(6.8)
$(+)-\alpha-$ Ethyl- β-(3-amino-2,4,6-triiodophenyl)propionic acid was obaned in the same way the (-) form, operating on the other enantiomeric salt. Fron 10 of salt was obtained $6 .!g^{g}$ wf $\left(+3\right.$ icinl, rup $\left.162^{\circ},[\alpha]^{2} 1\right]+5.1=0 . t^{\circ}\left(c_{2}^{2}\right.$ D $\left.60 H\right)$.
 () 23.14; 1, 66.70.

[^0]: ${ }^{a}$ See Table I, footnote a,

[^1]: (1) This investigation was supported by Public Health Service Research

